The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140763
PDF

Enhancing Facemask Detection using Deep learning Models

Author 1: Abdullahi Ahmed Abdirahman
Author 2: Abdirahman Osman Hashi
Author 3: Ubaid Mohamed Dahir
Author 4: Mohamed Abdirahman Elmi
Author 5: Octavio Ernest Romo Rodriguez

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 7, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Face detection and mask detection are critical tasks in the context of public safety and compliance with mask-wearing protocols. Hence, it is important to track down whoever violated rules and regulations. Therefore, this paper aims to implement four deep learning models for face detection and face with mask detection: MobileNet, ResNet50, Inceptionv3, and VGG19. The models are evaluated based on precision and recall metrics for both face detection and face with mask detection tasks. The results indicate that the proposed model based on ResNet50 achieves superior performance in face detection, demonstrating high precision (99.4%) and recall (98.6%) values. Additionally, the proposed model shows commendable accuracy in mask detection. MobileNet and Inceptionv3 provide satisfactory results, while the proposed model based on VGG19 excels in face detection but shows slightly lower performance in mask detection. The findings contribute to the development of effective face mask detection systems, with implications for public safety.

Keywords: Object detection; deep learning; detection; face detection; mask detection; convolutional neural network

Abdullahi Ahmed Abdirahman, Abdirahman Osman Hashi, Ubaid Mohamed Dahir, Mohamed Abdirahman Elmi and Octavio Ernest Romo Rodriguez, “Enhancing Facemask Detection using Deep learning Models” International Journal of Advanced Computer Science and Applications(IJACSA), 14(7), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140763

@article{Abdirahman2023,
title = {Enhancing Facemask Detection using Deep learning Models},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140763},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140763},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {7},
author = {Abdullahi Ahmed Abdirahman and Abdirahman Osman Hashi and Ubaid Mohamed Dahir and Mohamed Abdirahman Elmi and Octavio Ernest Romo Rodriguez}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org