The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140795
PDF

Knee Cartilage Segmentation using Improved U-Net

Author 1: Nawaf Waqas
Author 2: Sairul Izwan Safie
Author 3: Kushsairy Abdul Kadir
Author 4: Sheroz Khan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 7, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Patello-femoral joint stability is a complex problem and requires detailed anatomic parametric study for knowing the associated breakdowns of knee cartilage. Osteoarthritis is one of the main disorders, which disrupt the normal bio-mechanics and stability of the patello-femoral joint and for diagnosing osteoarthritis radiologists needs a lot of time to diagnose it. An improved network called PSU-Net is proposed for the automatic segmentation of femoral, tibia, and patella cartilage in knee MR images. The model utilizes a Squeeze and Excitation block with residual connection for effective feature learning that helps in learning imbalance anatomical structure between background, bone areas and cartilage. The severity of knee cartilage is measured through the Kellgren and Lawrence (KL) grading system by radiologists. Also, updated weighted loss function is used during training to optimize the model and improve cartilage segmentation. Results demonstrate that PSU-Net can accurately and quickly identify cartilages compared to the traditional procedures, aiding in the treatment planning in a very short amount of time. Future work will involve the use of augmentation methods and also use this architecture as a generator model for generative adversarial network to improve performance further. The utility of this work will help in analyzing the anatomy of the human knee by the radiologists in short amount of time that may prove helpful to standardize and automate patello-femoral measurements in diverse patient populations.

Keywords: Knee image segmentation; U-Net; loss function; squeeze and excitation

Nawaf Waqas, Sairul Izwan Safie, Kushsairy Abdul Kadir and Sheroz Khan, “Knee Cartilage Segmentation using Improved U-Net” International Journal of Advanced Computer Science and Applications(IJACSA), 14(7), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140795

@article{Waqas2023,
title = {Knee Cartilage Segmentation using Improved U-Net},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140795},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140795},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {7},
author = {Nawaf Waqas and Sairul Izwan Safie and Kushsairy Abdul Kadir and Sheroz Khan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org