The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01408119
PDF

A Framework for Agriculture Plant Disease Prediction using Deep Learning Classifier

Author 1: Mohammelad Baljon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 8, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The agricultural industry in Saudi Arabia suffers from the effects of vegetable diseases in the Central Province. The primary causes of death documented in this analysis were 32 fungal diseases, two viral diseases, two physiological diseases, and one parasitic disease. Because early diagnosis of plant diseases may boost the productivity and quality of agricultural operations, tomatoes, Pepper and Onion were selected for the experiment. The primary goal is to fine-tune the hyperparameters of common Machine Learning classifiers and Deep Learning architectures in order to make precise diagnoses of plant diseases. The first stage makes use of common image processing methods using ml classifiers; the input picture is median filtered, contrast increased, and the background is removed using HSV color space segmentation. After shape, texture, and color features have been extracted using feature descriptors, hyperparameter-tuned machine learning (ML) classifiers such as k-nearest neighbor, logistic regression, support vector machine, and random forest are used to determine an outcome. Finally, the proposed Deep Learning Plant Disease Detection System (DLPDS) makes use of Tuned ML models. In the second stage, potential Convolutional Neural Network (CNN) designs were evaluated using the supplied input dataset and the SGD (Stochastic Gradient Descent) optimizer. In order to increase classification accuracy, the best Convolutional Neural Network (CNN) model is fine-tuned using several optimizers. It is concluded that MCNN (Modified Convolutional Neural Network) achieved 99.5% classification accuracy and an F1 score of 1.00 for Pepper disease in the first phase module. Enhanced GoogleNet using the Adam optimizer achieved a classification accuracy of 99.5% and an F1 score of 0.997 for Pepper illnesses, which is much higher than previous models. Thus, proposed work may adapt this suggested strategy to different crops to identify and diagnose illnesses more effectively.

Keywords: Suggested agricultural plant disease prediction system; tuned ML models; machine learning classifiers; plant disease detection; deep learning architectures

Mohammelad Baljon, “A Framework for Agriculture Plant Disease Prediction using Deep Learning Classifier” International Journal of Advanced Computer Science and Applications(IJACSA), 14(8), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01408119

@article{Baljon2023,
title = {A Framework for Agriculture Plant Disease Prediction using Deep Learning Classifier},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01408119},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01408119},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {8},
author = {Mohammelad Baljon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org