The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140832
PDF

Attitude Synchronization and Stabilization for Multi-Satellite Formation Flying with Advanced Angular Velocity Observers

Author 1: Belkacem Kada
Author 2: Khalid Munawar
Author 3: Muhammad Shafique Shaikh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 8, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper focuses on two aspects of satellite formation flying (SFF) control: finite-time attitude synchronization and stabilization under undirected time-varying communication topology and synchronization without angular velocity measurements. First, a distributed nonlinear control law ensures rapid convergence and robust disturbance attenuation. To prove stability, a Lyapunov function involving an integrator term is utilized. Specifically, attitude synchronization and stabilization conditions are derived using graph theory, local finite-time convergence for homogeneous systems, and LaSalle's non-smooth invariance principle. Second, the requirements for angular velocity measurements are loosened using a distributed high-order sliding mode estimator. Despite the failure of inter-satellite communication links, the homogeneous sliding mode observer precisely estimates the relative angular velocity and provides smooth control to prevent the actuators of the satellites from chattering. Simulations numerically demonstrate the efficacy of the proposed design scheme.

Keywords: Attitude synchronization; coordinated control; finite-time control; high-order sliding mode observer; inter-satellite communication links; leader-following consensus; switching communication topology

Belkacem Kada, Khalid Munawar and Muhammad Shafique Shaikh, “Attitude Synchronization and Stabilization for Multi-Satellite Formation Flying with Advanced Angular Velocity Observers” International Journal of Advanced Computer Science and Applications(IJACSA), 14(8), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140832

@article{Kada2023,
title = {Attitude Synchronization and Stabilization for Multi-Satellite Formation Flying with Advanced Angular Velocity Observers},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140832},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140832},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {8},
author = {Belkacem Kada and Khalid Munawar and Muhammad Shafique Shaikh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org