The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140844
PDF

Application of Improved Ant Colony Algorithm Integrating Adaptive Parameter Configuration in Robot Mobile Path Design

Author 1: Jinli Han

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 8, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Under the background of the continuous progress of Industry 4.0 reform, the market demand for mobile robots in major world economies is gradually increasing. In order to improve the mobile robot's movement path planning quality and obstacle avoidance ability, this research adjusted the node selection method, pheromone update mechanism, transition probability and volatility coefficient calculation method of the ant colony algorithm, and improved the search direction setting and cost estimation calculation method of the A* algorithm. Thus, a robot movement path planning model can be designed with respect to the improved ant colony algorithm and A* algorithm. The simulation experiment results on grid maps show that the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the Tianniu whisker search algorithm, and the particle swarm algorithm designed in this study converged after 8, 37, 23, and 26 iterations, respectively. The minimum path lengths after convergence were 13.24m, 17.82m, 16.24m, and 17.05m, respectively. When the edge length of the grid map is 100m, the minimum planning length and total moving time of the planning model constructed in view of the improved algorithm, the traditional ant colony algorithm, the longicorn whisker search algorithm, and the particle swarm algorithm designed in this study are 49m, 104m, 75m, 93m and 49s, 142s, 93s, and 127s, respectively. This indicates that the model designed in this study can effectively shorten the mobile path and training time while completing mobile tasks. The results of this study have a certain reference value for optimizing the robot's movement mode and obstacle avoidance ability.

Keywords: Ant colony algorithm; robots; mobile path planning; obstacle avoidance

Jinli Han, “Application of Improved Ant Colony Algorithm Integrating Adaptive Parameter Configuration in Robot Mobile Path Design” International Journal of Advanced Computer Science and Applications(IJACSA), 14(8), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140844

@article{Han2023,
title = {Application of Improved Ant Colony Algorithm Integrating Adaptive Parameter Configuration in Robot Mobile Path Design},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140844},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140844},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {8},
author = {Jinli Han}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org