The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140853

Campus Network Intrusion Detection Based on Gated Recurrent Neural Network and Domain Generation Algorithm

Author 1: Qi Rong
Author 2: Guang Zhao

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 8, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Network attacks are diversified, rare and Universal generalization. This has made the exploration and construction of network information flow packet threat detection systems, which becomes a hot research topic in preventing network attacks. So this study establishes a network data threat detection model based on traditional network threat detection systems and deep learning neural networks. And convolutional neural network and data enhancement technology are used to optimize the model and improve rare data recognizing accuracy. The experiment confirms that this detection model has a recognition probability of approximately 11% and 42% for two rare attacks when N=1, respectively. When N=2, their probabilities are 52% and 78%, respectively. When N=3, their recognition probabilities are approximately 85% and 92%, respectively. When N=4, their recognition probabilities are about 58% and 68%, respectively, with N=3 having the best recognition effect. In addition, the recognition efficiency of this model for malicious domain name attacks and normal data remains around 90%, which has significant advantages compared to traditional detection systems. The proposed network data flow threat detection model that integrates Gated Recurrent Neural Network and Domain Generation Algorithm has certain practicality and feasibility.

Keywords: Gated recurrent; domain generation algorithm; campus network; threat detection; neural network

Qi Rong and Guang Zhao, “Campus Network Intrusion Detection Based on Gated Recurrent Neural Network and Domain Generation Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 14(8), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140853

@article{Rong2023,
title = {Campus Network Intrusion Detection Based on Gated Recurrent Neural Network and Domain Generation Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140853},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140853},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {8},
author = {Qi Rong and Guang Zhao}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org