The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140806
PDF

Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models

Author 1: Hina Bhanbhro
Author 2: Yew Kwang Hooi
Author 3: Worapan Kusakunniran
Author 4: Zaira Hassan Amur

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 8, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Single Line Diagrams (SLDs) are used in electrical power distribution systems. These diagrams are crucial to engineers during the installation, maintenance, and inspection phases. For the digital interpretation of these documents, deep learning-based object detection methods can be utilized. However, there is a lack of efforts made to digitize the SLDs using deep learning methods, which is due to the class-imbalance problem of these technical drawings. In this paper, a method to address this challenge is proposed. First, we use the latest variant of You Look Only Once (YOLO), YOLO v8 to localize and detect the symbols present in the single-line diagrams. Our experiments determine that the accuracy of symbol detection based on YOLO v8 is almost 95%, which is more satisfactory than its previous versions. Secondly, we use a synthetic dataset generated using multi-fake class generative adversarial network (MFCGAN) and create fake classes to cope with the class imbalance problem. The images generated using the GAN are then combined with the original images to create an augmented dataset, and YOLO v5 is used for the classification of the augmented dataset. The experiments reveal that the GAN model had the capability to learn properly from a small number of complex diagrams. The detection results show that the accuracy of YOLO v5 is more than 96.3%, which is higher than the YOLO v8 accuracy. After analyzing the experiment results, we might deduce that creating multiple fake classes improved the classification of engineering symbols in SLDs.

Keywords: Single line diagrams; engineering drawings; synthetic data; symbol detection; deep learning; augmented dataset

Hina Bhanbhro, Yew Kwang Hooi, Worapan Kusakunniran and Zaira Hassan Amur, “Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models” International Journal of Advanced Computer Science and Applications(IJACSA), 14(8), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140806

@article{Bhanbhro2023,
title = {Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140806},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140806},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {8},
author = {Hina Bhanbhro and Yew Kwang Hooi and Worapan Kusakunniran and Zaira Hassan Amur}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org