The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140890

A Hybrid Classification Approach of Network Attacks using Supervised and Unsupervised Learning

Author 1: Rahaf Hamoud R. Al-Ruwaili
Author 2: Osama M. Ouda

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 8, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The increasing scale and sophistication of network attacks have become a major concern for organizations around the world. As a result, there is an increasing demand for effective and accurate classification of network attacks to enhance cyber security measures. Most existing schemes assume that the available training data is labeled; that is, classification is based on supervised learning. However, this is not always the case since the available real data is expected to be unlabeled. In this paper, this issue is tackled by proposing a hybrid classification approach that combines both supervised and unsupervised learning to build a predictive classification model for classifying network attacks. First, unsupervised learning is used to label the data available in the dataset. Then, different supervised machine learning algorithms are utilized to classify data with the labels obtained from the first step and compare the results with the ground truth labels. Moreover, the issue of the unbalanced dataset is addressed using both over-sampling and under-sampling techniques. Several experiments have been conducted, using the NSL-KDD dataset, to evaluate the efficiency of the proposed hybrid model and the obtained results demonstrate that the accuracy of our proposed model is comparable to supervised classification methods that assume that all data is labeled.

Keywords: Network attacks; supervised learning; unsupervised learning; machine learning

Rahaf Hamoud R. Al-Ruwaili and Osama M. Ouda, “A Hybrid Classification Approach of Network Attacks using Supervised and Unsupervised Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(8), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140890

@article{Al-Ruwaili2023,
title = {A Hybrid Classification Approach of Network Attacks using Supervised and Unsupervised Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140890},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140890},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {8},
author = {Rahaf Hamoud R. Al-Ruwaili and Osama M. Ouda}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org