The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01409121
PDF

A Fruit Ripeness Detection Method using Adapted Deep Learning-based Approach

Author 1: Weiwei Zhang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Fruit ripeness detection plays a crucial role in precise agriculture, enabling optimal harvesting and post-harvest handling. Various methods have been investigated in the literature for fruit ripeness detection in vision-based systems, with deep learning approaches demonstrating superior accuracy compared to other approaches. However, the current research challenge lies in achieving high accuracy rates in deep learning-based fruit ripeness detection. In this study proposes a method based on the YOLOv8 algorithm to address this challenge. The proposed method involves generating a model using a custom dataset and conducting training, validation, and testing processes. Experimental results and performance evaluation demonstrate the effectiveness of the proposed method in achieving accurate fruit ripeness detection. The proposed method surpasses existing approaches through extensive experiments and performance analysis, providing a reliable solution for fruit ripeness detection in precise agriculture.

Keywords: Fruit ripeness detection; precise agriculture; deep learning; vision system; YOLOv8

Weiwei Zhang, “A Fruit Ripeness Detection Method using Adapted Deep Learning-based Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01409121

@article{Zhang2023,
title = {A Fruit Ripeness Detection Method using Adapted Deep Learning-based Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01409121},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01409121},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Weiwei Zhang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org