The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01409124
PDF

A Composite Noise Removal Network Based on Multi-domain Adaptation

Author 1: Fan Bai
Author 2: Pengfei Li
Author 3: Haoyang Sun
Author 4: Hui Zhang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Addressing the limitation of conventional single-scene image denoising algorithms in filtering mixed environmental disturbances, and recognizing the drawbacks of cascaded image enhancement algorithms, which have poor real-time performance and high computational demands, The composite weather adaptive denoising network (CWADN) is proposed. A Cascade Hourglass Feature Extraction Network is constructed with a visual attention mechanism to extract characteristics of rain, fog, and low-light noise from authentic natural images. These features are then transferred from their original real distribution domain to a synthetic distribution domain using a deep residual convolutional neural network. The generator and style encoder of the adversarial network work together to adaptively remove the transferred noise through a combination of supervised and unsupervised training, this approach achieves adaptive denoising capabilities tailored to complex natural environmental noise. Experimental results demonstrate that the proposed denoising network yields a high signal-to-noise ratio while maintaining excellent image fidelity. It effectively prevents image distortion, particularly in critical target areas. Additionally, it adapts to various types of mixed noise, making it a valuable tool for preprocessing images in advanced machine vision algorithms such as target recognition and tracking.

Keywords: Image denoising; domain adaptation; generative adversarial network; autoencoder

Fan Bai, Pengfei Li, Haoyang Sun and Hui Zhang, “A Composite Noise Removal Network Based on Multi-domain Adaptation” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01409124

@article{Bai2023,
title = {A Composite Noise Removal Network Based on Multi-domain Adaptation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01409124},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01409124},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Fan Bai and Pengfei Li and Haoyang Sun and Hui Zhang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org