The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140931
PDF

A Novel Artifact Removal Strategy and Spatial Attention-based Multiscale CNN for MI Recognition

Author 1: Duan Li
Author 2: Peisen Liu
Author 3: Yongquan Xia

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The brain-computer interface (BCI) based on motor imagery (MI) is a promising technology aimed at assisting individuals with motor impairments in regaining their motor abilities by capturing brain signals during specific tasks. However, non-invasive electroencephalogram (EEG) signals collected using EEG caps often contain large numbers of artifacts. Automatically and effectively removing these artifacts while preserving task-related brain components is a key issue for MI de-coding. Additionally, multi-channel EEG signals encompass temporal, frequency and spatial domain features. Although deep learning has achieved better results in extracting features and de-coding motor imagery EEG (MI-EEG) signals, obtaining a high-performance network on MI that achieves optimal matching of feature extraction, thus classification algorithms is still a challenging issue. In this study, we propose a scheme that combines a novel automatic artifact removal strategy with a spatial attention-based multiscale CNN (SA-MSCNN). This work obtained independent component analysis (ICA) weights from the first subject in the dataset and used K-means clustering to determine the best feature combination, which was then applied to other subjects for artifact removal. Additionally, this work designed an SA-MSCNN which includes multiscale convolution modules capable of extracting information from multiple frequency bands, spatial attention modules weighting spatial information, and separable convolution modules reducing feature information. This work validated the performance of the proposed model using a real-world public dataset, the BCI competition IV dataset 2a. The average accuracy of the method was 79.83%. This work conducted ablation experiments to demonstrate the effectiveness of the proposed artifact removal method and SA-MSCNN network and compared the results with outstanding models and state-of-the-art (SOTA) studies. The results confirm the effectiveness of the proposed method and provide a theoretical and experimental foundation for the development of new MI-BCI systems, which is very useful in helping people with disabilities regain their independence and improve their quality of life.

Keywords: Motor Imagery (MI); Brain Computer Interface (BCI); EEG signal; artifact removal; spatial attention; Convolutional Neural Network (CNN)

Duan Li, Peisen Liu and Yongquan Xia, “A Novel Artifact Removal Strategy and Spatial Attention-based Multiscale CNN for MI Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140931

@article{Li2023,
title = {A Novel Artifact Removal Strategy and Spatial Attention-based Multiscale CNN for MI Recognition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140931},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140931},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Duan Li and Peisen Liu and Yongquan Xia}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org