The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140933
PDF

Deep Neural Network-based Detection of Road Traffic Objects from Drone-Captured Imagery Focusing on Road Regions

Author 1: Hoanh Nguyen

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents a novel deep learning approach for the detection of traffic objects from drone-based imagery, focusing predominantly on the rapid and accurate detection of vehicles within road sections. The proposed method consists of two primary components: a road segmentation module and a vehicle detection network. The former leverages a residual unit with skip-connections to effectively extract road areas, while the latter employs a modified version of the YOLOv3 architecture, tailored for high-accuracy and high-speed vehicle detection. To address the issue of data imbalance, which is a pervasive challenge in drone images, this paper utilizes a range of data augmentation techniques to improve the robustness of the proposed model. Experimental results on the UAVDT and UAVid datasets exhibit that the proposed model attains a substantial boost in accuracy and inference speed of vehicle detection in comparison to the existing methods. These findings underscore the potential of the proposed approach for real-world traffic monitoring applications, where rapid and reliable vehicle detection is paramount.

Keywords: Deep learning; drone images; vehicle detection; road segmentation; data imbalance

Hoanh Nguyen, “Deep Neural Network-based Detection of Road Traffic Objects from Drone-Captured Imagery Focusing on Road Regions” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140933

@article{Nguyen2023,
title = {Deep Neural Network-based Detection of Road Traffic Objects from Drone-Captured Imagery Focusing on Road Regions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140933},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140933},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Hoanh Nguyen}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org