The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140957
PDF

Design of a Hypermodel using Transfer Learning to Detect DDoS Attacks in the Cloud Security

Author 1: Marram Amitha
Author 2: Muktevi Srivenkatesh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The present research proposes a detective approach to analyzing the performance of various algorithms used for more accurate detection of Distributed Denial-of-Service (DDoS) attacks in cloud computing. From the start, this study uses machine learning and deep learning to explore whether information security has evolved in recent years. The deployment of intrusion detection systems and distributed denial-of-service attacks are then discussed. The most common DDoS attack types were summarized. In addition, this study reviewed the existing approaches and techniques for DDoS attack detection. Various pre-processing subsystems as well as attribute-based selection techniques for preventing the detection of DDoS were briefly described. The proposed Intrusion detection system uses transfer learning for detecting DDoS attacks in the Networks. The proposed system used for the data set for the Network Intrusion Detection System is SDN Dataset which has more features and is suitable to use to detect in Network Intrusions. It contains 23 features that are used to detect Intrusions in the network SDN Dataset which consists of training and testing data to detect the attacks in the network. The detection and prevention subsystems through ML and DL strategies were briefly discussed. The proposed deep learning model for DDoS attack detection in cloud storage applications is explained. After that, various preprocessing strategies employed in the detection are described, among them rebalancing data, data cleaning, data splitting, and data normalization like min-max normalization. The author created a hypermodel that consists the parameters of baseline classifiers like Support Vector Machine, K-Nearest Neighbors Algorithm, XGboost, and other various machine learning models. The proposed model gives very good accuracy compared to other machine learning models.

Keywords: Machine learning; deep learning; support vector machine; k-nearest neighbors algorithm

Marram Amitha and Muktevi Srivenkatesh, “Design of a Hypermodel using Transfer Learning to Detect DDoS Attacks in the Cloud Security” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140957

@article{Amitha2023,
title = {Design of a Hypermodel using Transfer Learning to Detect DDoS Attacks in the Cloud Security},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140957},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140957},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Marram Amitha and Muktevi Srivenkatesh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org