The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140966
PDF

AIRA-ML: Auto Insurance Risk Assessment-Machine Learning Model using Resampling Methods

Author 1: Ahmed Shawky Elbhrawy
Author 2: Mohamed A. Belal
Author 3: Mohamed Sameh Hassanein

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Predicting underwriting risk has become a major challenge due to the imbalanced datasets in the field. A real-world imbalanced dataset is used in this work with 12 variables in 30144 cases, where most of the cases were classified as "accepting the insurance request", while a small percentage classified as "refusing insurance". This work developed 55 machine learning (ML) models to predict whether or not to renew policies. The models were developed using the original dataset and four data-level approaches resampling techniques: random oversampling, SMOTE, random undersampling, and hybrid methods with 11 ML algorithms to address the issue of imbalanced data (11 ML× (4 resampling techniques + unbalanced datasets) = 55 ML models). Seven classifier efficiency measures were used to evaluate these 55 models that were developed using 11 ML algorithms: logistic regression (LR), random forest (RF), artificial neural network (ANN), multilayer perceptron (MLP), support vector machine (SVM), naive Bayes (NB), decision tree (DT), XGBoost, k-nearest neighbors (KNN), stochastic gradient boosting (SGB), and AdaBoost. The seven classifier efficiency measures namely are accuracy, sensitivity, specificity, AUC, precision, F1-measure, and kappa. CRISP-DM methodology is utilisied to ensure that studies are conducted in a rigorous and systematic manner. Additionally, RapidMiner software was used to apply the algorithms and analyze the data, which highlighted the potential of ML to improve the accuracy of risk assessment in insurance underwriting. The results showed that all ML classifiers became more effective when using resampling strategies; where Hybrid resampling methods improved the performance of machine learning models on imbalanced data with an accuracy of 0.9967 and kappa statistics of 0.992 for the RF classifier.

Keywords: Risk assessment; machine learning; imbalanced data; rapid miner; CRISP-DM methodology

Ahmed Shawky Elbhrawy, Mohamed A. Belal and Mohamed Sameh Hassanein, “AIRA-ML: Auto Insurance Risk Assessment-Machine Learning Model using Resampling Methods” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140966

@article{Elbhrawy2023,
title = {AIRA-ML: Auto Insurance Risk Assessment-Machine Learning Model using Resampling Methods},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140966},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140966},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Ahmed Shawky Elbhrawy and Mohamed A. Belal and Mohamed Sameh Hassanein}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org