The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0151250
PDF

Integrating Multi-Agent System and Case-Based Reasoning for Flood Early Warning and Response System

Author 1: Nor Aimuni Md Rashid
Author 2: Zaheera Zainal Abidin
Author 3: Zuraida Abal Abas

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 12, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This research addresses the limitations of current Multi-Agent Systems (MAS) in Flood Early Warning and Response Systems (FEWRS), focusing on gaps in risk knowledge, monitoring, forecasting, warning dissemination, and response capabilities. These shortcomings reduce the system’s reliability and public trust, highlighting the need for better flood preparedness and learning mechanisms. To tackle these issues, this study proposes a new conceptual framework combining Case-Based Reasoning (CBR) with MAS, aimed at enhancing flood prediction, learning, and decision-making. CBR enables the system to learn from past flood events by retrieving and adapting cases to improve future predictions and responses, while MAS allows for decentralized and collaborative decision-making among various agents within the system. This integration fosters a dynamic, real-time system that adapts to changing conditions and improves over time through continuous feedback. The framework’s effectiveness is evaluated using the quadruple helix model, addressing social, economic, environmental, and governance aspects. Socially, the system increases community resilience through improved early warnings. Economically, it reduces flood impacts by enabling faster and more accurate responses. Environmentally, it enhances monitoring and preservation of ecosystems. In governance, the framework improves coordination between agencies and the public. The CBR-MAS framework significantly improves intelligent detection, decision-making speed, and community resilience, offering substantial improvements over traditional FEWRS. This adaptive approach promises to build a more reliable, trust-worthy system capable of handling the complexities of flood risks in the future.

Keywords: Flood; multi-agent system; flood early warning system; case-based reasoning; quadruple helix; flood risk

Nor Aimuni Md Rashid, Zaheera Zainal Abidin and Zuraida Abal Abas, “Integrating Multi-Agent System and Case-Based Reasoning for Flood Early Warning and Response System” International Journal of Advanced Computer Science and Applications(IJACSA), 15(12), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0151250

@article{Rashid2024,
title = {Integrating Multi-Agent System and Case-Based Reasoning for Flood Early Warning and Response System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0151250},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0151250},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {12},
author = {Nor Aimuni Md Rashid and Zaheera Zainal Abidin and Zuraida Abal Abas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org