The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150224
PDF

A Driving Area Detection Algorithm Based on Improved Swin Transformer

Author 1: Shuang Liu
Author 2: Ying Li
Author 3: Huankun Sheng

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 2, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Drivable area or free space detection is an essential part of the perception system of an autonomous vehicle. It helps intelligent vehicles understand road conditions and determine safe driving areas. Most of the driving area detection algorithms are based on semantic segmentation that classifies each pixel into its category, and recent advances in convolutional neural networks (CNNs) have significantly facilitated semantic segmentation in driving scenarios. Though promising results have been obtained, the existing CNN-based drivable area detection methods usually process one local neighborhood at a time. The locality of convolutional operation fails to capture long-range dependencies. To solve this problem, we propose an improved Swin Transformer based on shift window, named Multi-Swin. First, an improved patch merging strategy is proposed to enhance feature interactions between adjacent patches. Second, a decoder with upsampling layer is designed to restore the resolution of the feature map. Last, a multi-scale fusion module is utilized to improve the representation ability of global semantic and geometric information. Our method is evaluated and tested on the publicly available Cityscapes dataset. The experimental results show that our method achieves 91.92% IoU in road segmentation detection, surpassing state-of-the-art methods.

Keywords: CNNS; driving area detection; multiscale fusion; semantic segmentation; Swin Transformer

Shuang Liu, Ying Li and Huankun Sheng, “A Driving Area Detection Algorithm Based on Improved Swin Transformer” International Journal of Advanced Computer Science and Applications(IJACSA), 15(2), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150224

@article{Liu2024,
title = {A Driving Area Detection Algorithm Based on Improved Swin Transformer},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150224},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150224},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {2},
author = {Shuang Liu and Ying Li and Huankun Sheng}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org