The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150228
PDF

Improved ORB Algorithm Through Feature Point Optimization and Gaussian Pyramid

Author 1: Rohmat Indra Borman
Author 2: Agus Harjoko
Author 3: Wahyono

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 2, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Feature points obtained using traditional ORB methods often exhibit redundancy, uneven distribution, and lack scale invariance. This study enhances the traditional ORB algorithm by presenting an optimal technique for extracting feature points, thereby overcoming these challenges. Initially, the image is partitioned into several areas. The determination of the quantity of feature points to be extracted from each region takes into account both the overall number of feature points and the number of divisions that the image undergoes. This method tackles concerns related to the overlap and redundancy of feature points in the extraction process. To counteract the non-scale invariance issue in feature points obtained via the ORB method, a Gaussian pyramid is employed, and feature points are extracted at each level. Experimental findings demonstrate that our method successfully extracts feature points with greater uniformity and rationality, while preserving image matching accuracy. Specifically, our technique outperforms the traditional ORB algorithm by approximately 4% and the SURF algorithm by 2% in terms of matching performance. Additionally, the processing time of our proposed algorithm is three times faster than that of the SURF algorithm and twelve times faster than the SIFT algorithm.

Keywords: Feature point; Gaussian pyramid; image matching; ORB algorithm; scale invariance

Rohmat Indra Borman, Agus Harjoko and Wahyono, “Improved ORB Algorithm Through Feature Point Optimization and Gaussian Pyramid” International Journal of Advanced Computer Science and Applications(IJACSA), 15(2), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150228

@article{Borman2024,
title = {Improved ORB Algorithm Through Feature Point Optimization and Gaussian Pyramid},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150228},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150228},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {2},
author = {Rohmat Indra Borman and Agus Harjoko and Wahyono}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org