The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150248
PDF

Real-Time Airborne Target Tracking using DeepSort Algorithm and Yolov7 Model

Author 1: Yasmine Ghazlane
Author 2: Ahmed El Hilali Alaoui
Author 3: Hicham Medomi
Author 4: Hajar Bnouachir

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 2, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In light of the explosive growth of drones, it is more critical than ever to strengthen and secure aerial security and privacy. Drones are used maliciously by exploiting some gaps in artificial intelligence and cybersecurity. Airborne target detection and tracking tasks have gained paramount importance in various domains, encompassing surveillance, security, and traffic management. As airspace security systems aiming to regulate drone activities, anti-drones leverage mostly artificial intelligence and computer vision advances in the used detection and tracking models to perform effectively and accurately airborne target detection, identification, and tracking. The reliability of the anti-drone systems relies mostly on the ability of the incorporated models to satisfy an optimal compromise between speed and performance in terms of inference speed and used detection evaluation metrics since the system should recognize the targets effectively and rapidly to take appropriate actions regarding the target. This research article explores the efficacy of DeepSort algorithm coupled with YOLOv7 model in detecting and tracking five distinct airborne targets namely, drones, birds, airplanes, daytime frames, and buildings across diverse contexts. The used DeepSort and Yolov7 models aim to be used in anti-drone systems to detect and track the most encountered airborne targets to reinforce airspace safety and security. The study conducts a comparative analysis of tracking performance under different scenarios to evaluate the algorithm's versatility, robustness, and accuracy. The experimental results show the effectiveness of the proposed approach.

Keywords: Real-time detection; target tracking; anti-drone; Artificial Intelligence; Computer Vision

Yasmine Ghazlane, Ahmed El Hilali Alaoui, Hicham Medomi and Hajar Bnouachir, “Real-Time Airborne Target Tracking using DeepSort Algorithm and Yolov7 Model” International Journal of Advanced Computer Science and Applications(IJACSA), 15(2), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150248

@article{Ghazlane2024,
title = {Real-Time Airborne Target Tracking using DeepSort Algorithm and Yolov7 Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150248},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150248},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {2},
author = {Yasmine Ghazlane and Ahmed El Hilali Alaoui and Hicham Medomi and Hajar Bnouachir}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org