The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150276
PDF

Advancing Human Action Recognition and Medical Image Segmentation using GRU Networks with V-Net Architecture

Author 1: Dustakar Surendra Rao
Author 2: L. Koteswara Rao
Author 3: Vipparthi Bhagyaraju
Author 4: P. Rohini

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 2, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human Action Recognition and Medical Image Segmentation study presents a novel framework that leverages advanced neural network architectures to improve Medical Image Segmentation and Human Action Recognition (HAR). Gated Recurrent Units (GRU) are used in the HAR domain to efficiently capture complex temporal correlations in video sequences, yielding better accuracy, precision, recall, and F1 Score than current models. In computer vision and medical imaging, the current research environment highlights the significance of advanced techniques, especially when addressing problems like computational complexity, resilience, and noise in real-world applications. Improved medical image segmentation and human action recognition (HAR) are of growing interest. While methods such as the V-Net architecture for medical picture segmentation and Spatial Temporal Graph Convolutional Networks (ST-GCNs) for HAR have shown promise, they are constrained by things like processing requirement and noise sensitivity. The suggested methods highlight the necessity of sophisticated neural network topologies and optimisation techniques for medical picture segmentation and HAR, with further study focusing on transfer learning and attention processes. A Python tool has been implemented to perform min-max normalization, utilize GRU for human action recognition, employ V-net for medical image segmentation, and optimize with the Adam optimizer, with performance evaluation metrics integrated for comprehensive analysis. This study provides an optimised GRU network strategy for Human Action Recognition with 92% accuracy, and a V-Net-based method for Medical Image Segmentation with 88% Intersection over Union and 92% Dice Coefficient.

Keywords: Human action recognition; medical image segmentation; grated rectifier unit; V-net architecture; neural network

Dustakar Surendra Rao, L. Koteswara Rao, Vipparthi Bhagyaraju and P. Rohini, “Advancing Human Action Recognition and Medical Image Segmentation using GRU Networks with V-Net Architecture” International Journal of Advanced Computer Science and Applications(IJACSA), 15(2), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150276

@article{Rao2024,
title = {Advancing Human Action Recognition and Medical Image Segmentation using GRU Networks with V-Net Architecture},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150276},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150276},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {2},
author = {Dustakar Surendra Rao and L. Koteswara Rao and Vipparthi Bhagyaraju and P. Rohini}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org