The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150282
PDF

DDoS Attacks Detection in IoV using ML-based Models with an Enhanced Feature Selection Technique

Author 1: Ohoud Ali Albishi
Author 2: Monir Abdullah

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 2, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Internet of Vesicles (IoV) is an open and integrated network system with high reliability and security control capabilities. The system consists of vehicles, users, in-frastructure, and related networks. Despite the many advantages of IoV, it is also vulnerable to various types of attacks due to the continuous and increasing growth of cyber security attacks. One of the most significant attacks is a Distributed Denial of Service (DDoS) attack, where an intruder or a group of attackers attempts to deny legitimate users access to the service. This attack is performed by many systems, and the attacker uses high-performance processing units. The most common DDoS attacks are User Datagram Protocol (UDP) Lag and, SYN Flood. There are many solutions to deal with these attacks, but DDoS attacks require high-quality solutions. In this research, we explore how these attacks can be addressed through Machine Learning (ML) models. We proposed a method for identifying DDoS attacks using ML models, which we integrate with the CICDDoS2019 dataset that contains instances of such attacks. This approach also provides a good estimate of the model’s performance based on feature extraction strategic, while still being computationally efficient algorithms to divide the dataset into training and testing sets. The best ML models tested in the UDP Lag attack, Decision Tree (DT) and Random Forest (RF) had the best results with a precision, recall, and F1 score of 99.9%. In the SYN Flood attack, the best-tested ML models, including K-Nearest Neighbor (KNN), DT, and RF, demonstrated superior results with 99.9% precision, recall, and F1-score.

Keywords: Random forest; IoV; DDoS; feature selection

Ohoud Ali Albishi and Monir Abdullah, “DDoS Attacks Detection in IoV using ML-based Models with an Enhanced Feature Selection Technique” International Journal of Advanced Computer Science and Applications(IJACSA), 15(2), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150282

@article{Albishi2024,
title = {DDoS Attacks Detection in IoV using ML-based Models with an Enhanced Feature Selection Technique},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150282},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150282},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {2},
author = {Ohoud Ali Albishi and Monir Abdullah}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org