The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150296
PDF

A Hybrid Model for Ischemic Stroke Brain Segmentation from MRI Images using CBAM and ResNet50-Unet

Author 1: Fathia ABOUDI
Author 2: Cyrine DRISSI
Author 3: Tarek KRAIEM

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 2, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Ischemic stroke is the most prevalent type of stroke and a leading cause of mortality and long-term impairment globally. Timely identification, precise localization, and early detection of ischemic stroke lesions brain are critical in healthcare. Various modalities are employed for detection, and magnetic resonance imaging stands out as the most effective. Different magnetic resonance imaging techniques have been proposed for the detection of ischemic stroke lesion tumors, allowing for image uploading and visualization. Automated segmentation of ischemic stroke lesions from magnetic resonance imaging images has an important role in the analysis, prognostic, diagnosis, and clinical treatment planning of some neurological diseases. Recently, computer-aided diagnosis systems based on deep learning techniques have demonstrated significant promise in medical image analysis, particularly in multi-modality medical image segmentation. Automated segmentation is a difficult task due to the enormous quantity of data provided by magnetic resonance imaging and the variation in the location and size of the lesion. In this study, we develop an automated computer-aided diagnosis system for the automatic segmentation of ischemic stroke lesions from magnetic resonance imaging images using a Convolution Block Attention Module (CBAM) and hybrid UNet-ResNet50 model. The UNet model is integrated into the architecture, and the ResNet50 backbone is pre-trained to enhance feature extraction. CBAM block is a model applied in this approach to extract the most effective feature maps. The proposed approach is evaluated on the public Ischemic Stroke Lesion Segmentation Challenge 2015 dataset, arranged into weighted-T1(T1), weighted-T2(T2), FLAIR, and DWI sequences. Experimental results demonstrate the efficacy of our approach, achieving an impressive accuracy value of 99.56%, a precision value of 97.12%, and a DC of 79.6%. Notably, our approach outperforms other state-of-the-art methods, particularly in terms of accuracy values, highlighting its potential as a robust tool for automated ischemic stroke lesion segmentation in magnetic resonance imaging.

Keywords: Medical image segmentation; ischemic stroke disease; UNet; ResNet50; convolution block attention module; magnetic resonance imaging; transfer learning

Fathia ABOUDI, Cyrine DRISSI and Tarek KRAIEM, “A Hybrid Model for Ischemic Stroke Brain Segmentation from MRI Images using CBAM and ResNet50-Unet” International Journal of Advanced Computer Science and Applications(IJACSA), 15(2), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150296

@article{ABOUDI2024,
title = {A Hybrid Model for Ischemic Stroke Brain Segmentation from MRI Images using CBAM and ResNet50-Unet},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150296},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150296},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {2},
author = {Fathia ABOUDI and Cyrine DRISSI and Tarek KRAIEM}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org