The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150341
PDF

Revolutionizing Education: Cutting-Edge Predictive Models for Student Success

Author 1: Moyan Li
Author 2: Suyawen

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 3, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Student performance prediction systems are crucial for improving educational outcomes in various institutions, including universities, schools, and training centers. These systems gather data from diverse sources such as examination centers, registration departments, virtual courses, and e-learning platforms. Analyzing educational data is challenging due to its vast and varied nature, and to address this, machine learning techniques are employed. Dimensionality reduction, enabled by machine learning algorithms, simplifies complex datasets, making them more manageable for analysis. In this study, the Support Vector Classification (SVC) model is used for student performance prediction. SVC is a powerful machine-learning approach for classification tasks. To further enhance the model's efficiency and accuracy, two optimization algorithms, the Sea Horse Optimization (SHO) and the Adaptive Opposition Slime Mould Algorithm (AOSMA), are integrated. Machine learning (ML) reduces complexity through techniques like feature selection and dimensionality reduction, improving the effectiveness of student performance prediction systems and enabling data-informed decisions for educators and institutions. The combination of SVC with these innovative optimization strategies highlights the study's commitment to leveraging the latest advancements in ML and bio-inspired algorithms for more precise and robust student performance predictions, ultimately enhancing educational outcomes. Based on the obtained outcomes, it reveals that the SVSH model registered the best performance in predicting and categorizing the student performance with Accuracy=92.4%, Precision=93%, Recall=92%, and F1_Score=92%. Implementing SHO and AOSMA optimizers to the SVC model resulted in improvement of Accuracy evaluator outputs by 2.12% and 0.89%, respectively.

Keywords: Student performance; Support Vector Classification; sea horse optimization; adaptive opposition slime mould algorithm

Moyan Li and Suyawen, “Revolutionizing Education: Cutting-Edge Predictive Models for Student Success” International Journal of Advanced Computer Science and Applications(IJACSA), 15(3), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150341

@article{Li2024,
title = {Revolutionizing Education: Cutting-Edge Predictive Models for Student Success},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150341},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150341},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {3},
author = {Moyan Li and Suyawen}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org