The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150371
PDF

Word2vec-based Latent Semantic Indexing (Word2Vec-LSI) for Contextual Analysis in Job-Matching Application

Author 1: Sukri Sukri
Author 2: Noor Azah Samsudin
Author 3: Ezak Fadzrin
Author 4: Shamsul Kamal Ahmad Khalid
Author 5: Liza Trisnawati

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 3, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Job-matching applications have become a technology that provides solutions for making decisions about accepting and looking for work. The contextual analysis of documents or data from job matching is needed to make decisions. Some existing studies on the analysis of job-matching applications can use the Latent Semantic Indexing (LSI) method, which is based on word-to-word comparisons in the text. LSI has the advantage of contextual analysis. It can analyze amounts of data above 10,000 words. However, the conventional LSI method has limitations in contextual analysis because it uses the exact words but different meanings. Therefore, this paper proposes a new technique called word2vec-based latent semantic indexing (Word2vec-LSI) for contextual analysis, which is based on gen-sim as a multi-language word library. Then, modeling in text and wordnet and stopword as basic text modeling. We then used word2vec-LSI to perform contextual analysis based on the Irish (IE), Swedish (SE), and United Kingdom (UK) languages in the dataset (Jobs on CareerBuilder UK). The results of applying conventional LSI have an accuracy level of 79%, recall has a value of 79%, precision has a value of 62%, and Fi-Scor has a value of 70% with a similarity level of up to 50%. After implementing word2vec-LSI, it can increase accuracy, recall, and precision, and Fi-Scor both have 84% in contextual analysis, and the similarity level reaches up to 95%. Experiments confirm the usefulness of word2vec-LSI in increasing accuracy for contextual analysis applicable in natural language text mining.

Keywords: Contextual; LSI; job-matching; text-base; word2vec

Sukri Sukri, Noor Azah Samsudin, Ezak Fadzrin, Shamsul Kamal Ahmad Khalid and Liza Trisnawati, “Word2vec-based Latent Semantic Indexing (Word2Vec-LSI) for Contextual Analysis in Job-Matching Application” International Journal of Advanced Computer Science and Applications(IJACSA), 15(3), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150371

@article{Sukri2024,
title = {Word2vec-based Latent Semantic Indexing (Word2Vec-LSI) for Contextual Analysis in Job-Matching Application},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150371},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150371},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {3},
author = {Sukri Sukri and Noor Azah Samsudin and Ezak Fadzrin and Shamsul Kamal Ahmad Khalid and Liza Trisnawati}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org