The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150379
PDF

Retrieval-Augmented Generation Approach: Document Question Answering using Large Language Model

Author 1: Kurnia Muludi
Author 2: Kaira Milani Fitria
Author 3: Joko Triloka
Author 4: Sutedi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 3, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This study introduces the Retrieval Augmented Generation (RAG) method to improve Question-Answering (QA) systems by addressing document processing in Natural Language Processing problems. It represents the latest breakthrough in applying RAG to document question and answer applications, overcoming previous QA system obstacles. RAG combines search techniques in vector store and text generation mechanism developed by Large Language Models, offering a time-efficient alternative to manual reading limitations. The research evaluates RAG's that use Generative Pre-trained Transformer 3.5 or GPT-3.5-turbo from the ChatGPT model and its impact on document data processing, comparing it with other applications. This research also provides datasets to test the capabilities of the QA document system. The proposed dataset and Stanford Question Answering Dataset (SQuAD) are used for performance testing. The study contributes theoretically by advancing methodologies and knowledge representation, supporting benchmarking in research communities. Results highlight RAG's superiority: achieving a precision of 0.74 in Recall-Oriented Understudy for Gisting Evaluation (ROUGE) testing, outperforming others at 0.5; obtaining an F1 score of 0.88 in BERTScore, surpassing other QA apps at 0.81; attaining a precision of 0.28 in Bilingual Evaluation Understudy (BLEU) testing, surpassing others with a precision of 0.09; and scoring 0.33 in Jaccard Similarity, outshining others at 0.04. These findings underscore RAG's efficiency and competitiveness, promising a positive impact on various industrial sectors through advanced Artificial Intelligence (AI) technology.

Keywords: Natural Language Processing; Large Language Model; Retrieval Augmented Generation; Question Answering; GPT

Kurnia Muludi, Kaira Milani Fitria, Joko Triloka and Sutedi, “Retrieval-Augmented Generation Approach: Document Question Answering using Large Language Model” International Journal of Advanced Computer Science and Applications(IJACSA), 15(3), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150379

@article{Muludi2024,
title = {Retrieval-Augmented Generation Approach: Document Question Answering using Large Language Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150379},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150379},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {3},
author = {Kurnia Muludi and Kaira Milani Fitria and Joko Triloka and Sutedi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org