The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150385
PDF

Penetration Testing Framework using the Q Learning Ensemble Deep CNN Discriminator Framework

Author 1: Dipali Nilesh Railkar
Author 2: Shubhalaxmi Joshi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 3, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Penetration testing (PT) serves as an effective tool for examining networks and identifying vulnerabilities by simulating a hacker's attack to uncover valuable information, such as details about the host's operating and database systems. Strong penetration testing is crucial for assessing system vulnerabilities in the constantly changing world of cyber security. Existing methods often struggle with adapting to dynamic threats, providing limited automation, and lacking the ability to discern subtle security weaknesses. In comparison to manual PT, intelligent PT has gained widespread popularity due to its efficiency, resulting in reduced time consumption and lower labor costs. Considering this, the effective penetration testing framework is developed using prairie natural swarm (PNS) optimized Q-learning ensemble deep CNN. Initially, the penetration testing environment (Shodan search engine) is simulated, and along with that expert knowledge base is also generated. Subsequently, the Nmap script engine and Metasploit are deployed, providing robust tools for network investigation and vulnerability assessment. The system state is then relayed to the Q-learning ensemble deep convolutional neural network (Q-learning ensemble deep CNN) classifier. This unique ensemble combines the strengths of Q-learning and deep CNNs, enabling optimal policy learning for decision-making. The prairie natural swarm optimization algorithm is developed through the hybridization of coyote and particle swarm characteristics to fine-tune classifier parameters, enhancing performance. Additionally, the discriminator is trained to maximize standard action rewards while minimizing discounted action rewards, distinguishing valuable from less valuable information. By evaluating the advantage function, successful penetration likelihood is determined, informing situational decision-making through the Q-learning ensemble deep CNN classifier. Accuracy, sensitivity, and specificity as well as the proposed PNS-optimized Q-learning ensemble deep model are used to evaluate the output. In comparison to other approaches currently in use, CNN achieves values of 94.54%, 94.40%, 94.90% for TP, 94.64%, 94.69%, and 94.52% for k-fold.

Keywords: Penetration testing; Q-learning; ensemble deep CNN; prairie natural swarm optimization; Nmap script engine

Dipali Nilesh Railkar and Shubhalaxmi Joshi, “Penetration Testing Framework using the Q Learning Ensemble Deep CNN Discriminator Framework” International Journal of Advanced Computer Science and Applications(IJACSA), 15(3), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150385

@article{Railkar2024,
title = {Penetration Testing Framework using the Q Learning Ensemble Deep CNN Discriminator Framework},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150385},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150385},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {3},
author = {Dipali Nilesh Railkar and Shubhalaxmi Joshi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org