The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150401
PDF

A Comparative Analysis of Traditional and Machine Learning Methods in Forecasting the Stock Markets of China and the US

Author 1: Shangshang Jin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the volatile and uncertain financial markets of the post-COVID-19 era, our study conducts a comparative analysis of traditional econometric models—specifically, the AutoRegressive Integrated Moving Average (ARIMA) and Holt's Linear Exponential Smoothing (Holt's LES)—against advanced machine learning techniques, including Support Vector Regression (SVR), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Units (GRU). Focused on the daily stock prices of the S&P 500 and SSE Index, the study utilizes a suite of metrics such as R-squared, RMSE, MAPE, and MAE to evaluate the forecasting accuracy of these methodologies. This approach allows us to explore how each model fares in capturing the complex dynamics of stock market movements in major economies like the U.S. and China amidst ongoing market fluctuations instigated by the pandemic. The findings reveal that while traditional models like ARIMA demonstrate strong predictive accuracy over short-term horizons, LSTM networks excel in capturing complex, non-linear patterns in the data, showcasing superior performance over longer forecast horizons. This nuanced comparison highlights the strengths and limitations of each model, with LSTM emerging as the most effective in navigating the unpredictable dynamics of post-pandemic financial markets. Our results offer crucial insights into optimizing forecasting methodologies for stock price predictions, aiding investors, policymakers, and scholars in making informed decisions amidst ongoing market challenges.

Keywords: Machine learning; Holt's LES; SVR; LSTM; GRU

Shangshang Jin, “A Comparative Analysis of Traditional and Machine Learning Methods in Forecasting the Stock Markets of China and the US” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150401

@article{Jin2024,
title = {A Comparative Analysis of Traditional and Machine Learning Methods in Forecasting the Stock Markets of China and the US},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150401},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150401},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Shangshang Jin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org