The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.01504101
PDF

Keyword Acquisition for Language Composition Based on TextRank Automatic Summarization Approach

Author 1: Yan Jiang
Author 2: Chunlin Xiang
Author 3: Lingtong Li

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: It is important to extract keywords from text quickly and accurately for composition analysis, but the accuracy of traditional keyword acquisition models is not high. Therefore, in this study, the Best Match 25 algorithm was first used to preprocess the compositions and evaluate the similarity between sentences. Then, TextRank was used to extract the abstract, construct segmentation and named entity model, and finally verify the research content. The results show that in the performance test, the Best Match 25 similarity algorithm has higher accuracy, recall rate and F1 value, the average running time is only 2182ms, and has the largest receiver working characteristic curve area, which is significantly higher than other models, reaching 0.954. The accuracy of TextRank algorithm is above 90%, the average accuracy of 100 text analysis is 94.23%, the average recall rate and F1 value are 96.67% and 95.85%, respectively. In comparison of the application of the four methods, the research model shows obvious advantages, the average keyword coverage rate is 94.54%, the average processing time of 16 texts is 11.29 seconds, and the average 24-hour memory usage is only 15.67%, which is lower than the other three methods. The experimental results confirm the superiority of the model in terms of keyword extraction accuracy. This research not only provides a new technical tool for language composition teaching and evaluation, but also provides a new idea and method for keyword extraction research in the field of natural language processing.

Keywords: Language composition; keywords; best match 25; textrank; digests

Yan Jiang, Chunlin Xiang and Lingtong Li, “Keyword Acquisition for Language Composition Based on TextRank Automatic Summarization Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.01504101

@article{Jiang2024,
title = {Keyword Acquisition for Language Composition Based on TextRank Automatic Summarization Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.01504101},
url = {http://dx.doi.org/10.14569/IJACSA.2024.01504101},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Yan Jiang and Chunlin Xiang and Lingtong Li}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org