The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.01504102
PDF

Investigating Cooling Load Estimation via Hybrid Models Based on the Radial Basis Function

Author 1: Sirui Zhang
Author 2: Hao Zheng

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: To advance energy conservation in cooling systems within buildings, a pivotal technology known as cooling load prediction is essential. Traditional industry computational models typically employ forward or inverse modeling techniques, but these methods often demand extensive computational resources and involve lengthy procedures. However, artificial intelligence (AI) surpasses these approaches, with its models exhibiting the capability to autonomously discern intricate patterns, adapt dynamically, and enhance their performance as data volumes increase. AI models excel in forecasting cooling loads, accounting for various factors like weather conditions, building materials, and occupancy. This results in agile and responsive predictions, ultimately leading to heightened energy efficiency. The dataset of this study, which comprised 768 samples, was derived from previous studies. The primary objective of this study is to introduce a novel framework for the prediction of Cooling Load via integrating the Radial Basis Function (RBF) with 2 innovative optimization algorithms, specifically the Dynamic Arithmetic Optimization Algorithm (DAO) and the Golden Eagle Optimization Algorithm (GEO). The predictive outcomes indicate that the RBDA prediction model outperforms RBF in cooling load predictions, with RMSE=0.792, approximately half as much as those of RBF. Furthermore, the RBDA model's performance, especially in the training phase, confirmed the optimal value of R2=0.993.

Keywords: Cooling load estimation; machine learning; building energy consumption; radial basis functions; dynamic arithmetic optimization algorithm; golden eagle optimization algorithm

Sirui Zhang and Hao Zheng, “Investigating Cooling Load Estimation via Hybrid Models Based on the Radial Basis Function” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.01504102

@article{Zhang2024,
title = {Investigating Cooling Load Estimation via Hybrid Models Based on the Radial Basis Function},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.01504102},
url = {http://dx.doi.org/10.14569/IJACSA.2024.01504102},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Sirui Zhang and Hao Zheng}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org