The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150413
PDF

Securing IoT Environment by Deploying Federated Deep Learning Models

Author 1: Saleh Alghamdi
Author 2: Aiiad Albeshri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The vast network of interconnected devices, known as the Internet of Things (IoT), produces significant volumes of data and is vulnerable to security threats. The proliferation of IoT protocols has resulted in numerous zero-day attacks, which traditional machine learning systems struggle to detect due to IoT networks' complexity and the sheer volume of these attacks. This situation highlights the urgent need for developing more advanced and effective attack detection methods to address the growing security challenges in IoT environments. In this research, we propose an attack detection mechanism based on deep learning for federated learning in IoT. Specifically, we aim to detect and prevent malicious attacks in the form of model poisoning and Byzantine attacks that can compromise the accuracy and integrity of the trained model. The objective is to compare the performance of a distributed attack detection system using a DL model against a centralized detection system that uses shallow machine learning models. The proposed approach uses a distributed attack detection system that consists of multiple nodes, each with its own DL model for detecting attacks. The DL model is trained using a large dataset of network traffic to learn high-level features that can distinguish between normal and malicious traffic. The distributed system allows for efficient and scalable detection of attacks in a federated learning network within the IoT. The experiments show that the distributed attack detection system using DL outperforms centralized detection systems that use shallow machine learning models. The proposed approach has the potential to improve the security of the IoT by detecting attacks more effectively than traditional machine learning systems. However, there are limitations to the approach, such as the need for a large dataset for training the DL model and the computational resources required for the distributed system.

Keywords: Internet of Things (IoT); security breaches; machine learning; Deep Learning (DL)

Saleh Alghamdi and Aiiad Albeshri, “Securing IoT Environment by Deploying Federated Deep Learning Models” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150413

@article{Alghamdi2024,
title = {Securing IoT Environment by Deploying Federated Deep Learning Models},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150413},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150413},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Saleh Alghamdi and Aiiad Albeshri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org