The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150416
PDF

Research on Diagnosis Method of Common Knee Diseases Based on Subjective Symptoms and Random Forest Algorithm

Author 1: Guangjun Wang
Author 2: Mengxia Hu
Author 3: Linlin Lv
Author 4: Hanyuan Zhang
Author 5: Yining Sun
Author 6: Benyue Su
Author 7: Zuchang Ma

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Knee diseases are common diseases in the elderly, and timely and effective diagnosis of knee diseases is essential for disease treatment and rehabilitation training. In this study, we construct a diagnostic model of common knee diseases based on subjective symptoms and random forest algorithm to realize patients' self-initial diagnosis. In this paper, we first constructed a questionnaire of subjective symptoms of knee, and set up a questionnaire system to guide users to fill out the questionnaire correctly. Then clinical data collection is carried out to obtain clinical questionnaire data. Finally, the diagnostic analysis of three common diseases of knee joint is carried out by random forest machine learning method. Through leave-one-out cross validation, the accuracy of meniscus injury, anterior cruciate ligament injury and knee osteoarthritis diseases are 0.79, 0.84, 0.81 respectively; the sensitivity is 0.79, 0.84, 0.88 respectively; and the specificity is 0.80, 0.84, 0.79 respectively. The results show that the method can achieve a good effect of self-diagnosis, and can provide a knee joint disease screening a convenient and effective approach.

Keywords: Knee diseases; subjective symptoms; random forest algorithm; self-diagnosis

Guangjun Wang, Mengxia Hu, Linlin Lv, Hanyuan Zhang , Yining Sun, Benyue Su and Zuchang Ma, “Research on Diagnosis Method of Common Knee Diseases Based on Subjective Symptoms and Random Forest Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150416

@article{Wang2024,
title = {Research on Diagnosis Method of Common Knee Diseases Based on Subjective Symptoms and Random Forest Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150416},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150416},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Guangjun Wang and Mengxia Hu and Linlin Lv and Hanyuan Zhang and Yining Sun and Benyue Su and Zuchang Ma}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org