The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150437
PDF

Comparative Analysis of Transformer Models for Sentiment Analysis in Low-Resource Languages

Author 1: Yusuf Aliyu
Author 2: Aliza Sarlan
Author 3: Kamaluddeen Usman Danyaro
Author 4: Abdulahi Sani B A Rahman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The analysis of sentiments expressed on social media platforms is a crucial tool for understanding user opinions and preferences. The large amount of the texts found on social media are mostly in different languages. However, the accuracy of sentiment analysis in these systems faces different challenges in multilingual low-resource settings. Recent advancements in deep learning transformer models have demonstrated superior performance compared to traditional machine learning techniques. The majority of preceding works are predominantly constructed on the foundation of monolingual languages. This study presents a comparative analysis that assesses the effectiveness of transformer models, for multilingual low-resource languages sentiment analysis. The study aims to improve the accuracy of the existing baseline performance in analyzing tweets written in 12 low-resource African languages. Four widely used start-of-the-art transformer models were employed. The experiment was carried out using standard datasets of tweets. The study showcases AfriBERTa as a robust performer, exhibiting superior sentiment analysis capabilities across diverse linguistic contexts. It outperformed the established benchmarks in both SemEval-2023 Task 12 and AfriSenti baseline. Our framework achieves remarkable results with an F1-score of 81% and an accuracy rate of 80.9%. This study provides validation of the framework's robustness in the domain of sentiment analysis across a low-resource linguistics context. our research not only contributes a comprehensive sentiment analysis framework for low-resource African languages but also charts a roadmap for future enhancements. Emphasize the ongoing pursuit of adaptability and robustness in sentiment analysis models for diverse linguistic landscapes.

Keywords: Sentiment analysis; low-resource languages; multilingual; word-embedding; transformer

Yusuf Aliyu, Aliza Sarlan, Kamaluddeen Usman Danyaro and Abdulahi Sani B A Rahman, “Comparative Analysis of Transformer Models for Sentiment Analysis in Low-Resource Languages” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150437

@article{Aliyu2024,
title = {Comparative Analysis of Transformer Models for Sentiment Analysis in Low-Resource Languages},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150437},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150437},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Yusuf Aliyu and Aliza Sarlan and Kamaluddeen Usman Danyaro and Abdulahi Sani B A Rahman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org