The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150445
PDF

Improving Prediction Accuracy using Random Forest Algorithm

Author 1: Nesma Elsayed
Author 2: Sherif Abd Elaleem
Author 3: Mohamed Marie

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: One of the latest studies in predicting bankruptcy is the performance of the financial prediction models. Although several models have been developed, they often do not achieve high performance, especially when using an imbalanced data set. This highlights the need for more exact prediction models. This paper examines the application as well as the benefits of machine learning with the purpose of constructing prediction models in the field of corporate financial performance. There is a lack of scientific research related to the effects of using random forest algorithms in attribute selection and prediction process for enhancing financial prediction. This paper tests various feature selection methods along with different prediction models to fill the gap. The study used a quantitative approach to develop and propose a business failure model. The approach involved analyzing and preprocessing a large dataset of bankrupt and non-bankrupt enterprises. The performance of the model was then evaluated using various metrics such as accuracy, precision, and recall. Findings from the present study show that random forest is recommended as the best model to predict corporate bankruptcy. Moreover, findings write down that the proper use of attribute selection methods helps to enhance the prediction precision of the proposed models. The use of random forest algorithm in feature selection and prediction can produce more exact and more reliable results in predicting bankruptcy. The study proves the potential of machine learning techniques to enhance financial performance.

Keywords: Corporate bankruptcy; feature selection; financial ratios; prediction models; random forest

Nesma Elsayed, Sherif Abd Elaleem and Mohamed Marie, “Improving Prediction Accuracy using Random Forest Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150445

@article{Elsayed2024,
title = {Improving Prediction Accuracy using Random Forest Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150445},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150445},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Nesma Elsayed and Sherif Abd Elaleem and Mohamed Marie}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org