The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150447
PDF

Segmentation Analysis for Brain Stroke Diagnosis Based on Susceptibility-Weighted Imaging (SWI) using Machine Learning

Author 1: Shaarmila Kandaya
Author 2: Abdul Rahim Abdullah
Author 3: Norhashimah Mohd Saad
Author 4: Ezreen Farina
Author 5: Ahmad Sobri Muda

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Magnetic Resonance Imaging (MRI) plays a crucial role in diagnosing brain disorders, with stroke being a significant category among them. Recent studies emphasize the importance of swift treatment for stroke, known as "time is brain," as early intervention within six hours of stroke onset can save lives and improve outcomes. However, the conventional manual diagnosis of brain stroke by neuroradiologists is subjective and time-consuming. To address this issue, this study presents an automatic technique for diagnosing and segmenting brain stroke from MRI images according to pre and post stroke patient. The technique utilizes machine learning methods, focusing on Susceptibility Weighted Imaging (SWI) sequences. The machine learning technique involves four stage, those are pre-processing, segmentation, feature extraction, and classification. In this paper, preprocessing and segmentation are proposed to identify the stroke region. The segmentation performance is assessed using Jaccard indices, Dice Coefficient, false positive, and false negative rates. The results show that adaptive threshold performs best for stroke lesion segmentation, with good improvement stroke patient that achieving the highest Dice coefficient of 0.96. In conclusion, this proposed stroke segmentation technique has promising potential for diagnosing early brain stroke, providing an efficient and automated approach to aid medical professionals in timely and accurate diagnoses.

Keywords: Magnetic Resonance Imaging (MRI) diagnosis; time is brain; Susceptibility Weighted Imaging (SWI) and dice coefficient

Shaarmila Kandaya, Abdul Rahim Abdullah, Norhashimah Mohd Saad, Ezreen Farina and Ahmad Sobri Muda, “Segmentation Analysis for Brain Stroke Diagnosis Based on Susceptibility-Weighted Imaging (SWI) using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150447

@article{Kandaya2024,
title = {Segmentation Analysis for Brain Stroke Diagnosis Based on Susceptibility-Weighted Imaging (SWI) using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150447},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150447},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Shaarmila Kandaya and Abdul Rahim Abdullah and Norhashimah Mohd Saad and Ezreen Farina and Ahmad Sobri Muda}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org