The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150459
PDF

A Robust Hybrid Convolutional Network for Tumor Classification Using Brain MRI Image Datasets

Author 1: Satish Bansal
Author 2: Rakesh S Jadon
Author 3: Sanjay K. Gupta

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Brain tumour detection is challenging for experts or doctors in the early stage. Many advanced techniques are used for the detection of different cancers and analysis using different medical images. Deep learning (DL) comes under artificial intelligence, which is used to analyse and characterisation medical image processing and also finds the classification of brain cancer. Magnetic Resonance Imaging (MRI) has become the keystone in brain cancer recognition and the fusion of advanced imaging methods with cutting-edge DL models has exposed great potential in enhancing accuracy. This research aims to develop an efficient hybrid CNN model by employing support vector machine (SVM) classifiers to advance the efficacy and stability of the projected convolutional neural network (CNN) model. Two distinct brain MRI image datasets (Dataset_MC and Dataset_BC) are binary and multi-classified using the suggested CNN and hybrid CNN-SVM (Support Vector Machine) models. The suggested CNN model employs fewer layers and parameters for feature extraction, while SVM functions as a classifier to preserve maximum accuracy in a shorter amount of time. The experiment result shows the evaluation of the projected CNN model with the SVM for the performance evaluation, in which CNN-SVM give the maximum accuracy on the test datasets at 99% (Dataset_BC) and 98% (Dataset_MC) as compared to other CNN models.

Keywords: CNN; SVM; MRI images; brain tumor; deep learning

Satish Bansal, Rakesh S Jadon and Sanjay K. Gupta, “A Robust Hybrid Convolutional Network for Tumor Classification Using Brain MRI Image Datasets” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150459

@article{Bansal2024,
title = {A Robust Hybrid Convolutional Network for Tumor Classification Using Brain MRI Image Datasets},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150459},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150459},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Satish Bansal and Rakesh S Jadon and Sanjay K. Gupta}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org