The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150467
PDF

Entity Relation Joint Extraction Method Based on Insertion Transformers

Author 1: Haotian Qi
Author 2: Weiguang Liu
Author 3: Fenghua Liu
Author 4: Weigang Zhu
Author 5: Fangfang Shan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 4, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Existing multi-module multi-step and multi-module single-step methods for entity relation joint extraction suffer from issues such as cascading errors and redundant mistakes. In contrast, the single-module single-step modeling approach effectively alleviates these limitations. However, the single-module single-step method still faces challenges when dealing with complex relation extraction tasks, such as excessive negative samples and long decoding times. To address these issues, this paper proposes an entity relation joint extraction method based on Insertion Transformers, which adopts the single-module single-step approach and integrates the newly proposed tagging strategy. This method iteratively identifies and inserts tags in the text, and then effectively reduces decoding time and the count of negative samples by leveraging attention mechanisms combined with contextual information, while also resolving the problem of entity overlap. Compared to the state-of-the-art models on two public datasets, this method achieves high F1 scores of 93.2% and 91.5%, respectively, demonstrating its efficiency in resolving entity overlap issues.

Keywords: Entity relation extraction; tagging strategy; joint extraction; transformer

Haotian Qi, Weiguang Liu, Fenghua Liu, Weigang Zhu and Fangfang Shan, “Entity Relation Joint Extraction Method Based on Insertion Transformers” International Journal of Advanced Computer Science and Applications(IJACSA), 15(4), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150467

@article{Qi2024,
title = {Entity Relation Joint Extraction Method Based on Insertion Transformers},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150467},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150467},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {4},
author = {Haotian Qi and Weiguang Liu and Fenghua Liu and Weigang Zhu and Fangfang Shan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org