The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150855
PDF

Twitter Truth: Advanced Multi-Model Embedding for Fake News Detection

Author 1: Yasmine LAHLOU
Author 2: Sanaa El FKIHI
Author 3: Rdouan FAIZI

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 8, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The identification of fake news represents a substantial challenge within the context of the accelerated dissemination of digital information, most notably on social media and online platforms. This study introduces a novel approach, entitled " MT-FND: Multi-Model Embedding Approach to Fake News Detection," which is designed to enhance the detection of fake news. The methodology presented here integrates the strengths of multiple transformer-based models, namely BERT, ELECTRA, and XLNet, with the objective of encoding and extracting contextual information from news articles. In addition to transformer embeddings, a variety of other features are incorporated, including sentiment analysis, tweet length, word count, and graph-based features, to enrich the representation of textual content. The fusion of signals from diverse models and features provides a more comprehensive and nuanced comprehension of news articles, thereby improving the accuracy of discerning misinformation. To evaluate the efficacy of the approach, a benchmark dataset comprising both authentic and fabricated news articles was employed. The proposed framework was tested using three different machine-learning models: Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB). The experimental results demonstrate the effectiveness of the multi-model embedding fusion approach in detecting fake news, with XGB achieving the highest performance with an accuracy of 87.28%, a precision of 85.56%, a recall of 89.53%, and an F1-score of 87.50%. These findings signify a notable improvement over traditional machine learning classifiers, underscoring the potential of this fusion approach in advancing methodologies for combating misinformation, promoting information integrity, and enhancing decision-making processes in digital media landscapes.

Keywords: Fake news detection; transformer-based models; text classification; sentiment analysis

Yasmine LAHLOU, Sanaa El FKIHI and Rdouan FAIZI, “Twitter Truth: Advanced Multi-Model Embedding for Fake News Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150855

@article{LAHLOU2024,
title = {Twitter Truth: Advanced Multi-Model Embedding for Fake News Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150855},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150855},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {8},
author = {Yasmine LAHLOU and Sanaa El FKIHI and Rdouan FAIZI}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org