The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150808
PDF

Image Generation Using StyleVGG19-NST Generative Adversarial Networks

Author 1: Dorcas Oladayo Esan
Author 2: Pius Adewale Owolawi
Author 3: Chunling Tu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 8, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Creating new image styles from the content of existing images is challenging to conventional Generative Adversarial Networks (GANs), due to their inability to generate high-quality image resolutions. The study aims to create top-notch images that seamlessly blend the style of one image with another without losing its style to artefacts. This research integrates Style Generative Adversarial Networks with Visual Geometry Group 19 (VGG19) and Neural Style Transfer (NST) to address this challenging issue. The styleGAN is employed to generate high-quality images, the VGG19 model is used to extract features from the image and NST is used for style transfer. Experiments were conducted on curated COCO masks and publicly available CelebFace art image datasets. The outcomes of the proposed approach when contrasted with alternative simulation techniques, indicated that the CelebFace dataset results produced an Inception Score (IS) of 16.57, Frecher Inception Distance (FID) of 18.33, Peak Signal-to-Noise Ratio (PSNR) of 28.33, Structural Similarity Index Measure (SSIM) of 0.93. While the curated dataset yields high IS scores of 11.67, low FID scores of 21.49, PSNR of 29.98, and SSIM of 0.98. This result indicates that artists can generate a variety of artistic styles with less effort without losing the key features of artefacts with the proposed method.

Keywords: Artworks; VGG19; Neural Style Transfer; Generative Adversarial Network; inception score; StyleGAN

Dorcas Oladayo Esan, Pius Adewale Owolawi and Chunling Tu, “Image Generation Using StyleVGG19-NST Generative Adversarial Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150808

@article{Esan2024,
title = {Image Generation Using StyleVGG19-NST Generative Adversarial Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150808},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150808},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {8},
author = {Dorcas Oladayo Esan and Pius Adewale Owolawi and Chunling Tu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org