The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150884
PDF

Enhancing Tuberculosis Diagnosis and Treatment Outcomes: A Stacked Loopy Decision Tree Approach Empowered by Moth Search Algorithm Optimization

Author 1: Huma Khan
Author 2: Mithun DSouza
Author 3: K. Suresh Babu
Author 4: Janjhyam Venkata Naga Ramesh
Author 5: K. R. Praneeth
Author 6: Pinapati Lakshmana Rao

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 8, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Chest X-ray imaging is the main tool for detecting tuberculosis (TB), providing essential information about pulmonary abnormalities that may indicate the presence of the disease. Still, manual interpretation is a common component of older diagnostic methods, and it may be laborious and subjective. The development of sophisticated machine learning methods offers a potential way to improve TB detection through the automation of chest X-ray image interpretation. This takes a look at goals to increase a sturdy framework for TB diagnosis the usage of Stacked Loopy Decision Trees (SLDT) optimized with the Moth Search Algorithm (MSA). The objective is to improve upon current techniques with the aid of integrating sophisticated feature extraction and ensemble mastering strategies. The novelty lies in the integration of SLDT, a hierarchical ensemble model able to shooting complex styles in chest X-ray images, with MSA for optimized parameter tuning and function selection. This technique addresses the complexity of TB analysis by enhancing each interpretability and overall performance metrics. The proposed framework employs the Gray-Level Co-prevalence Matrix (GLCM) for texture characteristic extraction, accompanied with the aid of SLDT ensemble studying optimized through MSA. This methodology objectives to discern TB-particular styles from chest X-ray pictures with excessive accuracy and efficiency. Evaluation of a comprehensive dataset demonstrates advanced performance metrics including accuracy, sensitivity, specificity, and vicinity underneath the ROC curve (AUC-ROC) compared to traditional gadget gaining knowledge of procedures. The outcomes demonstrate how well the SLDT-MSA framework performs in diagnosing TB, with 99% accuracy. The observation indicates that the SLDT-MSA framework offers practitioners a trustworthy and easily understandable solution, marking a significant advancement in TB diagnosis.

Keywords: Tuberculosis (TB); chest x-ray; stacked loopy decision trees (SLDT); moth search algorithm (MSA); medical imaging

Huma Khan, Mithun DSouza, K. Suresh Babu, Janjhyam Venkata Naga Ramesh, K. R. Praneeth and Pinapati Lakshmana Rao, “Enhancing Tuberculosis Diagnosis and Treatment Outcomes: A Stacked Loopy Decision Tree Approach Empowered by Moth Search Algorithm Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150884

@article{Khan2024,
title = {Enhancing Tuberculosis Diagnosis and Treatment Outcomes: A Stacked Loopy Decision Tree Approach Empowered by Moth Search Algorithm Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150884},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150884},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {8},
author = {Huma Khan and Mithun DSouza and K. Suresh Babu and Janjhyam Venkata Naga Ramesh and K. R. Praneeth and Pinapati Lakshmana Rao}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org