The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150890
PDF

Attention-Based Joint Learning for Intent Detection and Slot Filling Using Bidirectional Long Short-Term Memory and Convolutional Neural Networks

Author 1: Yusuf Idris Muhammad
Author 2: Naomie Salim
Author 3: Sharin Hazlin Huspi
Author 4: Anazida Zainal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 8, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Effective natural language understanding is crucial for dialogue systems, requiring precise intent detection and slot filling to facilitate interactions. Traditionally, these subtasks have been addressed separately, but their interconnection suggests that joint solutions yield better results. Recent neural network-based approaches have shown significant performance in joint intent detection and slot filling tasks. The two primary neural network structures used are recurrent neural networks (RNNs) and convolutional neural networks (CNNs). RNNs capture long-term dependencies and store previous information semantics in a fixed-size vector, but their ability to extract global semantics is limited. CNNs can capture n-gram features using convolutional filters, but their performance is constrained by filter width. To leverage the strengths and mitigate the weaknesses of both networks, this paper proposes an attention-based joint learning classification for intent detection and slot filling using BiLSTM and CNNs (AJLISBC). The BiLSTM encodes input sequences in both forward and backward directions, producing high-dimensional representations. It applies scalar and vectorial attention to obtain multichannel representations, with scalar attention calculating word-level importance and vectorial attention assessing feature-level importance. For classification, AJLISBC employs a CNN structure to capture word relations in the representations generated by the attention mechanism, effectively extracting n-gram features. Experimental results on the benchmark Airline Travel Information System (ATIS) dataset demonstrate that AJLISBC outperforms state-of-the-art methods.

Keywords: Joint learning; intent detection; slot filling; multichannel

Yusuf Idris Muhammad, Naomie Salim, Sharin Hazlin Huspi and Anazida Zainal, “Attention-Based Joint Learning for Intent Detection and Slot Filling Using Bidirectional Long Short-Term Memory and Convolutional Neural Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 15(8), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150890

@article{Muhammad2024,
title = {Attention-Based Joint Learning for Intent Detection and Slot Filling Using Bidirectional Long Short-Term Memory and Convolutional Neural Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150890},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150890},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {8},
author = {Yusuf Idris Muhammad and Naomie Salim and Sharin Hazlin Huspi and Anazida Zainal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org