The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150970
PDF

Advancing Natural Language Processing with a Combined Approach: Sentiment Analysis and Transformation Using Graph Convolutional LSTM

Author 1: Kedala Karunasree
Author 2: P. Shailaja
Author 3: T Rajesh
Author 4: U. Sesadri
Author 5: Choudaraju Neelima
Author 6: Divya Nimma
Author 7: Malabika Adak

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 9, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sentiment analysis is a key component of Natural Language Processing (NLP), taking into account the extraction of emotional cues from text. However, traditional strategies often fail to capture diffused feelings embedded in language. To deal with this, we advocate a novel hybrid model that complements sentiment analysis by way of combining Graph Convolutional Networks (GCNs) with Long Short-Term Memory (LSTM) networks. This fusion leverages LSTM’s sequential reminiscence abilities and GCN’s ability to model contextual relationships, allowing the detection of nuanced feelings regularly overlooked with the aid of conventional techniques. The hybrid technique demonstrates superior generalization overall performance and resilience, making it mainly powerful in complicated sentiment detection responsibilities that require a deeper knowledge of text. These results emphasize the capacity of combining sequential memory architectures with graph-based contextual facts to revolutionize sentiment analysis in NLP. This study not only introduces an innovative approach to sentiment analysis but also underscores the importance of integrating advanced techniques to push the boundaries of NLP research. This cutting-edge hybrid model surpasses the performance of previous techniques like CNN, CNN-LSTM, and RNN-LSTM with an amazing accuracy of 99.33%, creating a new benchmark in sentiment analysis. The results demonstrate how more precise sentiment analysis made possible by fusing sequential memory architectures with graph-based contextual information might revolutionise NLP. The findings provide a new benchmark, advancing the sphere by way of enabling greater specific and nuanced sentiment evaluation for a wide range of programs, inclusive of purchaser remarks analysis, social media monitoring, and emotional intelligence in AI structures.

Keywords: Graph Convolutional Networks (GCN); Long Short-Term Memory (LSTM); Natural Language Processing (NLP); sentiment analysis; emotions; text classification; machine learning

Kedala Karunasree, P. Shailaja, T Rajesh, U. Sesadri, Choudaraju Neelima, Divya Nimma and Malabika Adak, “Advancing Natural Language Processing with a Combined Approach: Sentiment Analysis and Transformation Using Graph Convolutional LSTM” International Journal of Advanced Computer Science and Applications(IJACSA), 15(9), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150970

@article{Karunasree2024,
title = {Advancing Natural Language Processing with a Combined Approach: Sentiment Analysis and Transformation Using Graph Convolutional LSTM},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150970},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150970},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {9},
author = {Kedala Karunasree and P. Shailaja and T Rajesh and U. Sesadri and Choudaraju Neelima and Divya Nimma and Malabika Adak}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org