The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150985
PDF

Content-Based Image Retrieval Using Transfer Learning and Vector Database

Author 1: Li Shuo
Author 2: Lilly Suriani Affendey
Author 3: Fatimah Sidi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 9, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Content-based image retrieval (CBIR) systems are essential for efficiently searching large image datasets using image features instead of text annotations. Major challenges include extracting effective feature representations to improve accuracy, as well as indexing them to improve the retrieval speed. The use of pre-trained deep learning models to extract features has elicited interest from researchers. In addition, the emergence of open-source vector databases allows efficient vector indexing which significantly increases the speed of similarity search. This paper introduces a novel CBIR system that combines transfer learning with vector databases to improve retrieval speed and accuracy. Using a pre-trained VGG-16 model, we extract high-dimensional feature vectors from images, which are stored and retrieved using the Milvus vector database. Our approach significantly reduces retrieval time, achieving real-time responses while maintaining high precision and recall. Experiments conducted on ImageClef, ImageNet, and Corel-1k datasets demonstrate the system’s effectiveness in large-scale image retrieval tasks, outperforming traditional methods in both speed and accuracy.

Keywords: Content-based image retrieval (CBIR); image retrieval; transfer learning; convolutional neural networks; VGG-16; vector database; milvus; feature extraction; high-dimensional vectors; real-time image search

Li Shuo, Lilly Suriani Affendey and Fatimah Sidi, “Content-Based Image Retrieval Using Transfer Learning and Vector Database” International Journal of Advanced Computer Science and Applications(IJACSA), 15(9), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150985

@article{Shuo2024,
title = {Content-Based Image Retrieval Using Transfer Learning and Vector Database},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150985},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150985},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {9},
author = {Li Shuo and Lilly Suriani Affendey and Fatimah Sidi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org