The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150986
PDF

Towards Accurate Detection of Diabetic Retinopathy Using Image Processing and Deep Learning

Author 1: K. Kalindhu Navanjana De Silva
Author 2: T. Sanduni Kumari Lanka Fernando
Author 3: L. D. Lakshan Sandaruwan Jayasinghe
Author 4: M.H.Dinuka Sandaruwan Jayalath
Author 5: Kasun Karunanayake
Author 6: B.A.P. Madhuwantha

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 9, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Diabetic retinopathy (DR) is a critical complication of diabetes, characterized by pathological changes in retinal blood vessels. This paper presents an innovative software application designed for DR detection and staging using fundus images. The system generates comprehensive reports, facilitating treatment planning and improving patient outcomes. Our study aims to develop an affordable computer assisted analysis system for accurate DR assessment, leveraging publicly available fundus image datasets. Key objectives include identifying relevant features for DR staging, developing robust image processing algorithms for lesion detection, and implementing machine learning models for accurate diagnosis. The research employs various pre-processing techniques to enhance image quality and optimize feature extraction. Convolutional Neural Networks (CNNs) are utilized for stage classification, achieving an impressive accuracy of 93.45%. Lesion detection algorithms, including optic disk localization, blood vessel segmentation, and exudate identification, demonstrate promising results in accurately identifying DR-related abnormalities. The developed software product integrates these advancements, providing a user-friendly interface for efficient DR diagnosis and management. Evaluation results validate the effectiveness of the CNN model in stage classification and lesion detection, with high sensitivity and specificity. The study discusses the significance of image augmentation and hyperparameter tuning in improving model performance. Future research directions include enhancing the detection of microaneurysms and hemorrhages, incorporating higher resolution images, and standardizing evaluation methods for lesion detection algorithms. In conclusion, this research underscores the potential of technology in revolutionizing DR diagnosis and management. The developed software product offers a cost-effective solution for early DR detection, emphasizing the importance of accessible healthcare solutions. The findings contribute to advancing the field of DR analysis and inspire further innovation for improved patient care.

Keywords: Diabetic retinopathy; fundus images; computer-assisted analysis; deep learning; image processing; convolutional neural networks component

K. Kalindhu Navanjana De Silva, T. Sanduni Kumari Lanka Fernando, L. D. Lakshan Sandaruwan Jayasinghe, M.H.Dinuka Sandaruwan Jayalath, Kasun Karunanayake and B.A.P. Madhuwantha, “Towards Accurate Detection of Diabetic Retinopathy Using Image Processing and Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 15(9), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150986

@article{Silva2024,
title = {Towards Accurate Detection of Diabetic Retinopathy Using Image Processing and Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150986},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150986},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {9},
author = {K. Kalindhu Navanjana De Silva and T. Sanduni Kumari Lanka Fernando and L. D. Lakshan Sandaruwan Jayasinghe and M.H.Dinuka Sandaruwan Jayalath and Kasun Karunanayake and B.A.P. Madhuwantha}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org