The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.01602109
PDF

Improving English Writing Skills Through NLP-Driven Error Detection and Correction Systems

Author 1: Purnachandra Rao Alapati
Author 2: A. Swathi
Author 3: Jillellamoodi Naga Madhuri
Author 4: Vijay Kumar Burugari
Author 5: Bhuvaneswari Pagidipati
Author 6: Yousef A.Baker El-Ebiary
Author 7: Prema S

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Error detection and correction is an important activity that ensures the quality of written communication, especially in education, business, and legal documentation. State-of-the-art NLP approaches have several issues, including overcorrection, poor handling of multilingual texts, and poor adaptability to domain-specific errors. Traditional methods, based on rule-based approaches or single-task models, fail to capture the complexity of real-world applications, especially in code-switched (multilingual) contexts and resource-scarce languages. To overcome these limitations, this research proposes an advanced error detection and correction framework based on transformer-based models such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-trained Transformer (GPT). The hybrid approach integrates a Seq2Seq architecture with attention mechanisms and error-specific layers for handling grammatical and spelling errors. Synthetic data augmentation techniques, including back-translation, improve the system's robustness across diverse languages and domains. The architecture attains maximum accuracy of 99%, surpassing the state-of-the-art models, in this case, GPT-3 fine-tuned for grammatical error correction at 98%. It demonstrates superior performance in various multilingual and domain-specific settings, in addition to complex spelling challenges such as homophones and visually similar words. The system was realized using Python with TensorFlow and PyTorch. The system applies C4-200M for training and evaluation. The precision and recall rates, with real-time processing of text, render the model highly useful for practice applications in the areas of education, content development, and platforms for communication. This research fills a gap in present systems and hence contributes to an enhancement of automated improvement of writing skills in the English language, with a sound and scalable solution.

Keywords: Natural Language Processing (NLP); error detection; writing skills improvement; language models; AI-Driven writing tools

Purnachandra Rao Alapati, A. Swathi, Jillellamoodi Naga Madhuri, Vijay Kumar Burugari, Bhuvaneswari Pagidipati, Yousef A.Baker El-Ebiary and Prema S, “Improving English Writing Skills Through NLP-Driven Error Detection and Correction Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.01602109

@article{Alapati2025,
title = {Improving English Writing Skills Through NLP-Driven Error Detection and Correction Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.01602109},
url = {http://dx.doi.org/10.14569/IJACSA.2025.01602109},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Purnachandra Rao Alapati and A. Swathi and Jillellamoodi Naga Madhuri and Vijay Kumar Burugari and Bhuvaneswari Pagidipati and Yousef A.Baker El-Ebiary and Prema S}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org