The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160213
PDF

Model for Training and Predicting the Occurrence of Potato Late Blight Based on an Analysis of Future Weather Conditions

Author 1: Daniel Damyanov
Author 2: Ivaylo Donchev

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Plant diseases pose a significant challenge to agriculture, leading to serious economic losses and a risk to food security. Predicting and managing diseases such as potato blight requires an analysis of key environmental factors, including temperature, dew point, and humidity, that influence the development of pathogens. The current study uses machine learning to integrate this data for the purpose of early detection of diseases. The use of local weather data from sensors, combined with forecast data from public weather API servers, is a prerequisite for accurate short-term forecasting of adverse events. The results highlight the potential of predictive models to optimize prevention strategies, reduce losses and support sustainable crop management. Machine learning provides powerful tools for analyzing and predicting data related to plant diseases. Combining different approaches allows the creation of more precise and adaptive models for disease management.

Keywords: Machine learning; potato late blight; data analysis; forecast; prediction models

Daniel Damyanov and Ivaylo Donchev, “Model for Training and Predicting the Occurrence of Potato Late Blight Based on an Analysis of Future Weather Conditions” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160213

@article{Damyanov2025,
title = {Model for Training and Predicting the Occurrence of Potato Late Blight Based on an Analysis of Future Weather Conditions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160213},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160213},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Daniel Damyanov and Ivaylo Donchev}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org