The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160249
PDF

Transfer Learning for Named Entity Recognition in Setswana Language Using CNN-BiLSTM Model

Author 1: Shumile Chabalala
Author 2: Sunday O. Ojo
Author 3: Pius A. Owolawi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This research proposes a hybrid approach for Named-Entity Recognition (NER) for Setswana, a low-resource language, that combines a bidirectional long short-term memory (BiLSTM) with a transfer learning model and a convolutional neural network (CNN). Among the 11 official languages of South Africa, Setswana is a morphologically rich language that is underrepresented in the field of deep learning for natural language processing (NLP). The fact that it is a language with limited resources is one of the reasons for this gap. The suggested NER hybrid transfer learning approach and an open-source Setswana NER dataset from the South African Centre for Digital Language Resources (SADiLaR), which contains an estimated 230,000 tokens overall, are used in this research to close this gap. Five NER models are created for the study and contrast with one another to determine which performs best. The performance of the top model is then contrasted with that of the baseline models. The latter three models are trained at sentence-level, whereas the first two are at word-level. Sentence-level models interpret the entire sentence as a series of word embeddings, while word-level models represent each word as a character sequence or word embedding. CNN is the first model, and CNN-BiLSTM transfer learning based on Word level is the second. Sentence-Level is the basis for the last three CNN, CNN-BiLSTM Transfer Learning, and CNN-BiLSTM models. With 99% of accuracy, the CNN-BiLSTM Transfer Learning sentence-level outperforms all other models. Furthermore, it outperforms the state-of-the-art models for Setswana in the literature that were created using the same dataset.

Keywords: Natural language processing; named entity recognition; convolutional neural network; bidirectional long short-term memory; Setswana

Shumile Chabalala, Sunday O. Ojo and Pius A. Owolawi, “Transfer Learning for Named Entity Recognition in Setswana Language Using CNN-BiLSTM Model” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160249

@article{Chabalala2025,
title = {Transfer Learning for Named Entity Recognition in Setswana Language Using CNN-BiLSTM Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160249},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160249},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Shumile Chabalala and Sunday O. Ojo and Pius A. Owolawi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org