The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160263
PDF

Classifying Weed Development Stages Using Deep Learning Methods

Author 1: Yasin ÇIÇEK
Author 2: Eyyüp GÜLBANDILAR
Author 3: Kadir ÇIRAY
Author 4: Ahmet ULUDAG

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 2, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The control of harmful weeds holds a significant place in the cultivation of agricultural products. A crucial criterion in this control process is identifying the development stages of the weeds. The technique to be used is determined based on the weed's growth stage. This study addresses the application of deep learning methods in classifying growth stages using images of various weed species to predict their development periods. Four different weed species, obtained from seeds collected in Turkey-Afyonkarahisar-Sinanpaşa Plain, were used in the study. The images were captured with a Nikon D7000 camera equipped with three different lenses, and the ROI extraction was performed using Lifex software. Using these ROI images, deep learning models such as DenseNet, EfficientNet, GoogleNet, Xception, and SqueezeNet were evaluated. Performance metrics including accuracy, F1 score, precision, and recall were employed. In the 4-class dataset with ROI annotations, DenseNet and Xception achieved an accuracy of 86.57%, while EfficientNet demonstrated the highest performance with an accuracy of 89.55%. Following the initial tests, it was concluded that classes 3 and 4 exhibited extreme similarity caused most of the prediction errors. Merging the said classes significantly increased the accuracy and F1 scores across all models. In image classification tests, SqueezeNet and GoogleNet demonstrated the shortest processing times. However, while EfficientNet lagged slightly behind these models in terms of speed, it exhibited superior accuracy. In conclusion, although the use of ROI improved classification performance, class merging strategies resulted in a more significant performance enhancement.

Keywords: Deep learning; weed development stages; classification; DenseNET; Xception; SqueezeNET; GoogleNET; EfficientNET; ROI

Yasin ÇIÇEK, Eyyüp GÜLBANDILAR, Kadir ÇIRAY and Ahmet ULUDAG, “Classifying Weed Development Stages Using Deep Learning Methods” International Journal of Advanced Computer Science and Applications(IJACSA), 16(2), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160263

@article{ÇIÇEK2025,
title = {Classifying Weed Development Stages Using Deep Learning Methods},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160263},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160263},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {2},
author = {Yasin ÇIÇEK and Eyyüp GÜLBANDILAR and Kadir ÇIRAY and Ahmet ULUDAG}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org