The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160369
PDF

Fuzzy Logic with Kalman Filter Model Framework for Children’s Personal Health Apps

Author 1: Noorrezam Yusop
Author 2: Massila Kamalrudin
Author 3: Nuridawati Mustafa
Author 4: Nor Aiza Moketar
Author 5: Tao Hai
Author 6: Siti Fairuz Nurr Sardikan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 3, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The increasing prevalence of obesity among children under five has led to a growing demand for improved food nutrition advisory systems. Current food nutrition recommendation models struggle with parameter estimation, contextual adaptation, and real-time accuracy, often relying on traditional fuzzy logic models that lack responsiveness to evolving dietary needs. This study proposes an Adaptive Extended Kalman Filter Fuzzy Logic (AEKFFL) model to enhance the accuracy and reliability of food nutrition recommendations. The AEKFFL model integrates the Extended Kalman Filter (EKF) for dynamic estimation of nutritional values and Fuzzy Logic for adaptive decision-making, effectively addressing parametric uncertainties in nutrition estimation. The research employs a Design Science Research Methodology (DSRM), incorporating stakeholder interviews, literature review, and data from food composition databases, user reviews, and ingredient information. The proposed hybrid model is tested against baseline methods, including standalone Fuzzy Logic, Support Vector Machine (SVM), Neural Networks (NN), and a hybrid Fuzzy-NN approach. Experimental results demonstrate that the AEKFFL model achieves the highest accuracy (94.8%) with the lowest error rates (MAE = 0.031, RMSE = 0.045), outperforming alternative models. Additionally, AEKFFL exhibits superior classification performance (F1-score = 94.4%) and usability (SUS score = 92.1%), indicating its effectiveness in real-time nutritional guidance. These findings suggest that AEKFFL provides an innovative and computationally efficient framework for personal health and food recommendations, contributing to enhanced dietary management and obesity prevention among children. Future work will focus on refining model adaptability and integrating real-time IoT data for further improvements in precision and responsiveness.

Keywords: Fuzzy logic; Kalman filter; food Nutrition; personal health; food recommendations

Noorrezam Yusop, Massila Kamalrudin, Nuridawati Mustafa, Nor Aiza Moketar, Tao Hai and Siti Fairuz Nurr Sardikan, “Fuzzy Logic with Kalman Filter Model Framework for Children’s Personal Health Apps” International Journal of Advanced Computer Science and Applications(IJACSA), 16(3), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160369

@article{Yusop2025,
title = {Fuzzy Logic with Kalman Filter Model Framework for Children’s Personal Health Apps},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160369},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160369},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {3},
author = {Noorrezam Yusop and Massila Kamalrudin and Nuridawati Mustafa and Nor Aiza Moketar and Tao Hai and Siti Fairuz Nurr Sardikan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org