The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160384
PDF

Optimizing Large Language Models for Low-Resource Languages: A Case Study on Saudi Dialects

Author 1: Bayan M. Alsharbi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 3, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Large Language Models (LLMs) have revolutionized natural language processing (NLP); however, their effectiveness remains limited for low-resource languages and dialects due to data scarcity. One such underrepresented variety is the Saudi dialect, a widely spoken yet linguistically distinct variant of Arabic. NLP models trained on Modern Standard Arabic (MSA) often struggle with dialectal variations, leading to suboptimal performance in real-world applications. This study aims to enhance LLM performance for the Saudi dialect by leveraging the MADAR dataset, applying data augmentation techniques, and fine-tuning a state-of-the-art LLM. Experimental results demonstrate the model’s effectiveness in Saudi dialect classification, achieving 91% accuracy, with precision, recall, and F1-scores all exceeding 0.90 across different dialectal variations. These findings underscore the potential of LLMs in handling dialectal Arabic and their applicability in tasks such as social media monitoring and automatic translation. Future research can further improve performance by refining fine-tuning strategies, integrating additional linguistic features, and expanding training datasets. Ultimately, this work contributes to democratizing NLP technologies for low-resource languages and dialects, bridging the gap in linguistic inclusivity within AI applications.

Keywords: LLM; Saudi Dialect; deep learning

Bayan M. Alsharbi, “Optimizing Large Language Models for Low-Resource Languages: A Case Study on Saudi Dialects” International Journal of Advanced Computer Science and Applications(IJACSA), 16(3), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160384

@article{Alsharbi2025,
title = {Optimizing Large Language Models for Low-Resource Languages: A Case Study on Saudi Dialects},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160384},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160384},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {3},
author = {Bayan M. Alsharbi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org