The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.01604106
PDF

A Robust Defense Mechanism Against Adversarial Attacks in Maritime Autonomous Ship Using GMVAE+RL

Author 1: Ganesh Ingle
Author 2: Kailas Patil
Author 3: Sanjesh Pawale

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 4, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we propose a robust defense frame-work combining Gaussian Mixture Variational Autoencoders (GMVAE) with Reinforcement Learning (RL) to counter adversarial attacks in Maritime Autonomous Systems, specifically targeting the Singapore Maritime Database. By modeling complex maritime data distributions through GMVAE and dynamically adapting decision boundaries via RL, our approach establishes a resilient latent representation space that effectively identifies and mitigates adversarial perturbations. Experimental evaluations using adversarial methods such as FGSM, IFGSM, DeepFool, and Carlini-Wagner attacks demonstrate that the proposed GMVAE+RL model outperforms traditional defenses in both accuracy and robustness. Specifically, it achieves a peak accuracy of 87% and robustness of 20.5%, compared to 85.8% and 19.2%for FGSM and significantly lower values for other methods. These results underscore the superiority of our method in ensuring data integrity and operational reliability within complex maritime environments facing evolving cyber threats.

Keywords: Maritime autonomous systems; reinforcement learning; defense mechanisms; Gaussian Mixture Variational Auto encoder; Singapore maritime database

Ganesh Ingle, Kailas Patil and Sanjesh Pawale, “A Robust Defense Mechanism Against Adversarial Attacks in Maritime Autonomous Ship Using GMVAE+RL” International Journal of Advanced Computer Science and Applications(IJACSA), 16(4), 2025. http://dx.doi.org/10.14569/IJACSA.2025.01604106

@article{Ingle2025,
title = {A Robust Defense Mechanism Against Adversarial Attacks in Maritime Autonomous Ship Using GMVAE+RL},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.01604106},
url = {http://dx.doi.org/10.14569/IJACSA.2025.01604106},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {4},
author = {Ganesh Ingle and Kailas Patil and Sanjesh Pawale}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org