The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2011.021001
PDF

Data Mining for Engineering Schools

Author 1: Chady EI Moucary

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 2 Issue 10, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: the supervision of the academic performance of engineering students is vital during an early stage of their curricula. Indeed, their grades in specific core/major courses as well as their cumulative General Point Average (GPA) are decisive when pertaining to their ability/condition to pursue Masters’ studies or graduate from a five-year Bachelor-of-Engineering program. Furthermore, these compelling strict requirements not only significantly affect the attrition rates in engineering studies (on top of probation and suspension) but also decide of grant management, developing courseware, and scheduling of programs. In this paper, we present a study that has a twofold objective. First, it attempts at correlating the aforementioned issues with the engineering students’ performance in some key courses taken at early stages of their curricula, then, a predictive model is presented and refined in order to endow advisors and administrators with a powerful decision-making tool when tackling such highly important issues. Matlab Neural Networks Pattern Recognition tool as well as Classification and Regression Trees (CART) are fully deployed with important cross validation and testing. Simulation and prediction results demonstrated a high level of accuracy and offered efficient analysis and information pertinent to the management of engineering schools and programs in the frame of the aforementioned perspective.

Keywords: component; Educational Data Mining; Classification and Regression Trees (CART); Relieff tool; Neural Networks; Prediction; Engineering Students’ Performance; Engineering Students’ Enrollment in Masters’ Studies.

Chady EI Moucary, “Data Mining for Engineering Schools” International Journal of Advanced Computer Science and Applications(IJACSA), 2(10), 2011. http://dx.doi.org/10.14569/IJACSA.2011.021001

@article{Moucary2011,
title = {Data Mining for Engineering Schools},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2011.021001},
url = {http://dx.doi.org/10.14569/IJACSA.2011.021001},
year = {2011},
publisher = {The Science and Information Organization},
volume = {2},
number = {10},
author = {Chady EI Moucary}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org